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Abstract: In a low-angle tracking situation, estimating the elevation angle is challenging due to
the entrance of the multipath signals in the antenna’s main lobe. In this article, we propose two
methods based on the extended Kalman filter (EKF) and frequency diversity (FD) process to estimate
the elevation angle of a low-angle isolated target. In the first case, a simple weighting of the
per-frequency estimates is obtained (termed WFD). Differently, in the second case, a matrix-based
elaboration of the per-frequency estimates is proposed (termed MFD). The proposed methods are
completely independent of prior knowledge of geometrical information and the physical parameters.
The simulation results show that both methods have excellent performance and guarantee accurate
elevation angle estimation in different multipath environments and even in very-low SNR conditions.
Hence, they are both suitable for low-peak-power radars.

Keywords: array antenna; extended Kalman filter; array signal processing; target tracking; direction
of arrival estimation

1. Introduction

For nearly half a century, researchers have been studying the problem of localizing
low-elevation targets. Unfortunately, in the above scenario, the multipath effect causes
a significant error in tracking the target elevation angle, even in the case of an isolated
target. Accordingly, multipath represents the main obstacle in solving the aforementioned
task accurately. Indeed, the antenna array receives more signals than one direct signal
while tracking a low-angle target flying over the surface. Specifically, specular and diffuse
components reflected from the surface are also received by the array and create a (ghost)
image target below the surface.

These multipath components lead to an interfering effect in the elevation angle es-
timation process. Such an effect may be destructive or constructive, depending on the
traveled distance from the target to the antenna and the phase difference between direct
and multipath signals. However, the specular signal is more destructive due a relatively-
stronger effect and higher correlation with the direct signal. Accordingly, the conventional
monopulse method fails in tracking a low-angle target in the presence of multipath. To mit-
igate such detrimental effects, White [1] enhanced the monopulse method by introducing
the double null (DN) and fixed beam (FB) methods.

These two methods were improved in [2] by squinting the antenna’s sum and differ-
ence patterns. Differently, in [3], the difference monopulse pattern was designed symmet-
rically via beamforming. The use of the frequency diversity (FD) in an optimal way to
reduce the multipath effect is investigated in [4].
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An alternative algorithm resorted to the idea of using the specular reflection signal
from the surface to improve the estimation accuracy of a monopulse antenna [5]. In the
work [6], an iterative multipath cancellation method was devised to progressively null
the reflection angle position by relying on the array antenna structure. Another iterative
processing practice improved the FB method performance by adaptively steering the
boresight to precisely retain a required even symmetry [7].

The complex angle method is another enhanced monopulse method, which uses
the real and imaginary parts of the monopulse ratio to estimate the elevation angle [8].
The weakness of this method is that there is a large ambiguity in its angular curve. In [9],
a hybrid adaptive method was proposed to exclude ambiguities from the angular curve
in the estimation process by using beamforming and optimal FD. There are other super-
resolution array signal processing methods, such as the multiple signal classification
(MUSIC) [10], the forward–backward linear prediction [11] and the minimum norm [12].

These methods are based on the eigenvector processing and performing poorly due
to high correlation between direct and reflected signals. Some proposed enhancement on
these methods are aiming at improving estimation accuracy by signal decorrelation but
suffering from aperture loss, an estimation bias and low cost-efficiency [13,14]. The latest
methods attempted to improve the performance and reduce the very high computational
load of the MUSIC method.

The first works by transforming the covariance matrix of received signals into the real-
value domain by employing a unitary transform [15], and the second works by converting
the two-dimensional searching into one-dimensional searching and taking advantage
of the polarization smoothing and the generalized MUSIC (GMUSIC) algorithm with a
polarization sensitive array system [16].

Maximum likelihood (ML) is another basic parametric estimation method that handles
the signal correlation without aperture loss [17]. However, this method cannot separate the
reflected signals and direct signal from each other in the low-angle situation and has high
computational complexity. For suppressing the computational complexity, the beamspace
domain ML method was proposed in [18].

Bosse proposed the Refined ML (RML) method to improve the ML method [19].
The RML method uses prior knowledge of the sea state and geometric information to
model the specular component. The two presented methods in [20,21] were robust in terms
of the fluctuation of the reflecting surface by considering the reflecting surface height as
an unknown parameter. In [22], the quadrature RML (QRML) method was introduced
by generating a quadrature correction term for the RML method to reduce the diffuse
random component.

A method in [23] promotes the ML method over the maximum a posteriori decision
and the windowing decision. In [24], a frequency-agile RML algorithm adjusts the operat-
ing frequency adaptively to minimize the mean square error (MSE) of angle estimation.

Moreover, the Kalman filter (KF), because of its feasibility, is a potent and one of the
most acknowledged tools for recursive estimation of the system state [25]. The KF is used
to estimate states optimally based on linear dynamical systems over normally-distributed
noise [26]. The extended KF (EKF) is an extension to cope with non-linearities of the
systems’s dynamics, which utilizes the first-order Taylor series expansion to reinstate a
linear estimation strategy [25].

A number of EKF algorithms have been proposed for angle of arrival (AoA) estima-
tion [27–29]. Nonetheless, these algorithms are not considering the low-angle scenarios
where detrimental multipath components degrade the AoA estimation performance.

In this paper, we propose two novel methods to estimate the elevation angle of a
low-altitude isolated target. Our methods capitalize the EKF, as opposed to the standard
KF, because of the non-linear relation between the observation and the target elevation
angle. The proposed EKF estimator is able to track the elevation angle of the target by
mitigating and smoothing the severe fluctuations caused by the specular and diffuse signals
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by predicting the value, the velocity and the acceleration of the target elevation angle based
on previous estimations.

To further increase the accuracy of the proposed methods, we rely on a FD process.
In the first method, we use a (rank-based) weighting of the per-frequency angle elevation
estimates. Conversely, in the second method, we use a matrix-based processing of the
aforementioned per-frequency estimates via a compact representation of the multiple-
measurement model.

The proposed methods can properly work in both rough and smooth surfaces and
do not require prior knowledge of the target range, the surface reflection coefficient or sea
state, the radar height, the polarization and the effective earth radius. The computational
complexity of the proposed methods is relatively low, and yet they present significant
performance in tracking low-angle targets even for a low number of antenna array ele-
ments. Still, the proposed methods show excellent performance even at very-low SNR (as
opposed to other existing methods [15,16]), thus, being suitable for adoption in low-peak-
powers radars.

The remainder of the manuscript is organized as follows. The propagation and
multipath models are introduced in Section 2, and the proposed methods for elevation angle
estimation are presented in Section 3. Section 4 presents (and discusses) the simulation
results to assess the effectiveness of the proposed methods. Finally, our conclusions and
future directions for research are given in Section 5.

Notation: in this paper, we use lower-case (resp. upper-case) bold letters denote
vectors (resp. matrices), with ak (resp. an,m) representing the kth element (resp. (n, m)th
element) of a (resp. A); i is used to denote the imaginary unit; the symbols (.)T and
(.)H are used to indicate transpose and conjugate transpose, respectively; Im denotes the
m-dimensional identity matrix; N (µ, Σ) denotes a normal distribution with mean vector µ
and covariance matrix Σ; Rayleigh(ρ) denotes a Rayleigh distribution with parameter ρ;
U (a, b) denotes a uniform distribution with support (a, b); and finally, the symbols ∼ and
≈mean “distributed as” and “approximately equal to”, respectively.

2. Propagation and Multipath Models

The present section describes the propagation and multipath models considered in this
work. Specifically, in Section 2.1, we first describe the general antenna array model. Then,
in Section 2.2, we detail the geometric parameters involved. Finally, in Sections 2.3 and 2.4,
we report the considered specular and diffuse component modeling.

2.1. General Propagation Model

As shown in Figure 1, we consider a curved-earth model with both specular and
diffuse propagation. The considered radar is equipped with a uniform linear array (ULA)
made of N elements with inter-element spacing d. The received array signal (observation)
vector x(n) ,

[
x1(n) x2(n) · · · xN(n)

]T , including the direct and multipath signals, is
given as

x(n) = a(θt) s(n) + a(θr) sr(n) + a(θd) sd(n) + w(n) (1)

where a(θ) ,
[
1 e−ikd sin(θ) · · · e−ik(N−1)d sin(θ)

]T
denotes the steering vector, with

k = (2π/λ) and λ representing the wave-number and the wavelength, respectively. In
Equation (1), the terms θt, θr and θd represent the arrival angles associated to the direct,
specular and diffuse component, respectively. Analogously, s(n), sr(n) and sd(n) denote
the amplitudes of the direct, specular and diffuse signals, respectively. Finally, w(n) is a
zero-mean complex additive Gaussian observation noise vector, namely w(n) ∼ N (0, C).

2.2. Evaluation of Geometric Parameters

According to Figure 1, the reflecting specular and diffuse signals received by the
antenna array are modeled based on a curved-earth surface assumption. Consequently,
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based on geometric considerations, we are able to obtain the explicit values of θt and θr,
as well as that of the grazing angle ψg (which are used in the following):

θt = sin−1

(
(re + ht)

2 − R2 − (re + hr)
2

2 R (re + hr)

)
(AoA direct) (2)

θr = sin−1
(

hr

R1
+

R1

2 re

)
(AoA specular) (3)

ψg = sin−1
(

hr

R1
− R1

2 re

)
(grazing angle) (4)

where hr and ht are the radar and target heights, respectively. Additionally, re denotes the
effective earth’s radius, which equals 4/3 times the earth’s radius (≈8504 km). Furthermore,
R, R1 and R2 represent (a) the radar to target range, (b) the radar to the surface reflection
point range and (c) the reflection point to target range, respectively. Finally, r1 and r2 are the
corresponding surface distances of R1 and R2. Such distance pairs can be obtained through
the following formulas:

R1 =
(

r2
e + (re + hr)

2 − 2re(re + hr) cos(r1/re)
)1/2

(5)

R2 =
(

r2
e + (re + ht)

2 − 2re(re + ht) cos(r2/re)
)1/2

(6)

r1 = re sin−1

(√
R2 − (ht − hr)2

4 (hr + re) (ht + re)

)
− f sin(η/3) (7)

r2 = re sin−1

(√
R2 − (ht − hr)2

4 (hr + re) (ht + re)

)
+ f sin(η/3) (8)

where f , 2√
3

(
re(ht + hr) +

(r1+r2)
2

4

)1/2
and η , sin−1

(
2 re(r1+r2) (ht−hr)

f 3

)
are suitably-

defined auxiliary coefficients. The aforementioned set of formulas for the evaluation of
radar-target geometric parameters are leveraged in what follows to model the specular and
diffuse components.

Figure 1. Multipath geometry model.
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2.3. Specular Component Modeling

In this study, we model the specular component as follows

sr(n) = Γ D ρs e−i∆φs(n) (9)

where Γ is the Fresnel reflection coefficient, D is the divergence coefficient, ρs is the specular
scattering coefficient, and ∆φ denotes the phase lag. We now provide details for each of
these constituting parameters.

The Fresnel reflection coefficient, which determines the ratio of the signal amplitude after
and before the incidence on a surface, is given for either vertical and horizontal polarization
as follows [30]

Γ =


εc sin(ψg)−

√
εc−cos2(ψg)

εc sin(ψg)+
√

εc−cos2(ψg)
vertical polarization

sin(ψg)−
√

εc−cos2(ψg)

sin(ψg)+
√

εc−cos2(ψg)
horizontal polarization

(10)

We observe that the coefficient Γ is a function of (a) the grazing angle ψg and (b) the
surface dielectric coefficient εc. The latter parameter is expressed as εc = ε− i60λσ, where
ε is the dielectric constant and σ is the conductivity. Such dependence makes Γ a frequency-
dependent parameter.

Conversely, the divergence factor, accounting for the incidence of the signal on a curved
earth surface, can be expressed approximately as

D ≈ 1√(
1 + 2r1r2

re(r1+r2) sin(ψg)

) (11)

where r1 and r2 are surface distances of R1 and R2 (cf. Equations (5)–(8)), respectively. We
can extract the angles with respect to the curved earth and propagation model in Figure 1.

Furthermore, we use Northam’s model [31] for accurately calculating the specular
scattering coefficient, namely:

ρs =

{
e−2(2πg)2

0 ≤ g ≤ 0.1
0.812537

1+2(2πg)2 g > 0.1
(12)

where g = (σh sin(ψg)/λ) denotes the surface roughness coefficient, which depends on
both the RMS of the surface roughness σh and the grazing angle ψg.

Finally, the phase lag functional expression is ∆φ = −k(R − (R1 + R2)). The latter
quantity depends on the radar to target range (R), the radar to the surface reflection point
range (R1) and the reflection point to target range (R2).

2.4. Diffuse Component Modeling

According to Beard’s experimental data [32], the random diffuse component can be
adequately modeled by considering its reflection point at the specular reflection point (i.e.,
θr = θd).

Hence, the vector component associated to the diffuse signal is given as:

a(θd) sd(n) ≈ a(θr) ρd s(n) (13)

where ρd is used to indicate the (complex-valued) diffuse reflection coefficient. The latter
parameter is modeled as a circularly-complex valued Gaussian random variable [31,33].
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Thus, the diffuse coefficient ρd can be equivalently expressed in the form ρd = ad eiϕd ,
where ad ∼ Rayleigh(σd) and ϕd ∼ U (0, 2π), respectively. In the considered diffuse
amplitude model, the Rayleigh parameter σd assumes the following expression

σd ,


3.68
√

2 |Γ| g 0 < g < 0.1√
2 |Γ|(0.454− 0.858 g) 0.1 ≤ g < 0.5

0.025
√

2 |Γ| g ≥ 0.5,

(14)

which depends on both the surface roughness coefficient (g) and the Fresnel reflection
coefficient (Γ).

To gain insight on the relative importance of specular and diffuse components in
different scenarios, Figure 2 illustrates the specular scattering coefficient ρs and the Rayleigh
parameter σd for different surface roughness conditions at an antenna height of 15 m.
The considered target is assumed to be fixed at range 20 km and altitude 80 m. Specifically,
in smooth surfaces (g < 0.1), the specular component has strong power, and the specular
scattering coefficient reaches a unit value whereas the Rayleigh parameter of the diffuse
component peak value equals 0.5, thus, showing that the specular signal has a more
destructive effect. Therefore, this demonstrates that the angle error on the smooth surface
is greater than the rough surface (0.1 < g < 0.5).
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Figure 2. The specular scattering coefficient and Rayleigh parameter against the surface roughness.

3. Elevation Angle Estimation

This section describes the proposed methodology for low-angle tracking in multipath
conditions. First, in Section 3.1, the EKF filter is derived, and the problem of unknown
parameters is tackled. Then, in Section 3.2, the capitalization of FD is explained, and the
fusion of per-frequency estimates is integrated within the considered EKF workflow.

3.1. EKF-Based Tracking

In this section, we propose an EKF method for low-elevation-angle estimation. The (lin-
ear) KF is not valid for the low-angle target estimation because the observation relation
with the elevation angle in Equation (1) is nonlinear. As mentioned earlier, we also use
the predictions of the velocity θ̇t(n) and the acceleration θ̈t(n) of target elevation angle
to improve the estimation accuracy. Accordingly, the state vector considered herein is
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θt(n) ,
[
θt(n) θ̇t(n) θ̈t(n)

]T . The considered state-evolution and measurement models
are summarized as follows {

θt(n) = Aθt(n− 1) + Bu(n)
x(n) = h(θt(n)) + w(n)

(15)

where u(n) ∼ N (0, Q) denotes the system (viz. process) noise (assumed to be independent
from sample to sample) and

A ,

1 T 1
2 T2

0 1 T
0 0 1

 B ,
[ 1

2 T2 T 1
]T (16)

In the above definitions, the term T represents the sampling period. Conversely, h(·)
denotes the N-dimensional measurement mapping, expressed in Equation (1), which relates
θt (i.e., the elevation angle of the target) to the noise-free received signal vector. Hence,
the observation vector does not (explicitly) contain the velocity (θ̇t) and the acceleration
(θ̈t) of the elevation angle. Finally, w(n) is the measurement noise vector as defined in
Equation (1).

Thus, the prediction equation for obtaining θ̂t(n|n− 1) and the corresponding mini-
mum prediction MSE matrix M(n|n− 1) can be expressed as

θ̂t(n|n− 1) = A θ̂t(n− 1|n− 1) (17)

M(n|n− 1) = A M(n− 1|n− 1) AT + BQBT (18)

where θ̂t(n − 1|n − 1) and M(n − 1|n − 1) are the final (elevation angle) target vector
estimate at previous sample and the corresponding MSE matrix, respectively. Both these
quantities are obtained based on the correction step driven by the considered measurement
model. Regarding such a model, we first analyze, in what follows, the single-frequency
(narrowband) case. Then, in Section 3.2, we generalize the correction step to the multi-
frequency case.

Starting from Equation (1), we ignore at the design phase the unknown terms a(θr) sr(n)
and a(θd) sd(n), and we approximate the (non-linear) function h(·) by linearizing it around
the current estimate. In order to do so, we resort to the calculation of the Jacobian matrix of
the mapping h(·) w.r.t. the state vector θt(n), denoted with H(n):

H(n) ,
∂h(·)

∂θt(n)

∣∣∣∣
θt(n)=θ̂t(n|n−1)

= s(n)
∂a(·)

∂θt(n)

∣∣∣∣
θt(n)=θ̂t(n|n−1)

(19)

= s(n)


0 0 0

e−ikd sin(θt(n))(−ikd cos(θt(n)))
...

...
...

...
...

e−ik(N−1)d sin(θt(n))(−ik(N − 1)d cos(θt(n))) 0 0


∣∣∣∣∣∣∣∣∣∣
θt(n)=θ̂t(n|n−1)

(20)

We recall that H(n) is an N × 3-dimensional matrix. Additionally, from inspection
of h(·), the observation does not contain the velocity and the acceleration of the elevation
angle. Hence, the second and third columns of H(n) are always null. From inspection of
Equation (19), it is apparent that the presence of the unknown scattering parameter s(n)
precludes the exact calculation of both h(n) and H(n) at each time step n. Accordingly, we
propose to use ĥ(n) and Ĥ(n), where s(n) is replaced by a corresponding suitable estimate
ŝ(n).
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Specifically, given the received array signal x(n), we can estimate the complex ampli-
tude of the direct signal from the following least squares (LS) problem

ŝ(n) , arg min
s(n)
‖x(n)− a(θt(n)) s(n)‖2 (21)

Thus, the estimated complex amplitude of the direct signal ŝ(n) is obtained in closed
form as

ŝ(n) =
[

a(θt(n))Ha(θt(n))
]−1

a(θt(n))Hx(n)
∣∣∣∣
θt(n)=θ̂t(n|n−1)

(22)

In the above equation, the unknown AoA θt(n) is in turn replaced with the corre-
sponding prediction one-step prediction θ̂t(n|n− 1). As a result, the equations of Kalman
gain matrix K(n), correction (estimation) θ̂t(n|n) and filtering MSE matrix M(n|n) for the
complex-valued EKF are given as [34]

K(n) = M(n|n− 1) ĤH(n)
[
C + Ĥ(n) M(n|n− 1) ĤH(n)

]−1
(23)

θ̂t(n|n) = θ̂t(n|n− 1) +<
{

K(n)
[

x(n)− ĥ
(
θ̂t(n|n− 1); n

)]}
(24)

M(n|n) =
[
I3 − K(n) Ĥ(n)

]
M(n|n− 1) (25)

where I3 is the 3× 3 identity matrix, and C is the observation noise covariance matrix.

3.2. Proposed FD-Based Smoothing

When capitalizing the diversity arising from wideband processing, multiple mea-
surements (at different frequencies) are available for the direct AoA θt(n) at the same time.
Accordingly, the state-evolution and measurement models generalize as follows:{

θt(n) = Aθt(n− 1) + Bu(n)
x f (n) = h f (θt(n)) + w f (n), f = 1, . . . F

(26)

where f = 1, . . . , F is used to denote the frequency bins, with F being the total number of
frequencies considered. The above measurement model at different frequencies can be also
collected in compact form as follows:{

θt(n) = Aθt(n− 1) + Bu(n)
xfd(n) = hfd(θt(n)) + wfd(n),

(27)

where we have used the definitions xfd(n) ,
[
x1(n)T · · · xF(n)T]T , wfd(n) , [w1(n)T · · ·

wF(n)T ]T and hfd(·) =
[
h1(·)T · · · hF(·)T]T , respectively.

Herein, we first observe that, with respect to the single-frequency case, the prediction
step is unvaried, i.e.,

θ̂t(n|n− 1) = A θ̂t(n− 1|n− 1) (28)

M(n|n− 1) = A M(n− 1|n− 1) AT + BQBT (29)

Conversely, in the following we present two FD-based methods for improving the per-
formance of the correction step. Specifically, one relies on simple weighting of per-frequency
elevation estimates (WFD), whereas the other provides a matrix-based elaboration of the
aforementioned estimates (MFD). The final elevation-angle estimate provided by the pro-
posed FD-based methods has very high accuracy due to smoothing and the multipath
mitigation effect. This is achieved due to the combined use of EKF-based tracking (which
leverages the time-dependence of the AoA) and multiple-frequency capitalization.
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3.2.1. Smoothing via Weighting-Based Frequency Diversity (WFD)

In the first approach, we arrange the estimated elevation angles for all frequencies by
increasing magnitude, namely

θ̂
(1)
t (n|n) ≤ θ̂

(2)
t (n|n) ≤ · · · ≤ θ̂

(F)
t (n|n) (30)

After that, we multiply each of these angles (as well as its corresponding MSE matrix
M f ) by an appropriate weighting coefficient and add them [4]. By doing so, we can elimi-
nate large peak errors by always giving the lowest proportion to the largest elevation angle
estimation. On the other hand, intermediate estimations have lower error probabilities.
Then, weighting by rank is expected to yield better estimate performance than a simple
average. The rank-based weighting formula considered in this work is the following

rm =
2(F−m)

F(F + 1)
(31)

where r1 (resp. rF) represents the biggest (resp. smallest) coefficient. Accordingly, we
assign these coefficients and derive the final angle estimation (θ̂wfd

t ) and averaged MSE
matrix (Mwfd) as follows

θ̂wfd
t =

rF−1 θ̂
(1)
t + · · ·+ r2 θ̂

( F
2−1)

t + r1 θ̂
( F+1

2 )
t + r3 θ̂

( F
2 +1)

t + · · ·+ rF θ̂
(F)
t for odd F

rF−1 θ̂
(1)
t + · · ·+ r1 θ̂

( F
2 )

t + r2 θ̂
( F+1

2 )
t + · · ·+ rF θ̂

(F)
t for even F

(32)

Mwfd =

{
rF−1 M(1) + · · ·+ r2 M( F

2−1) + r1 M( F+1
2 ) + r3M( F

2 +1) + · · ·+ rF M(F) for odd F
rF−1 M(1) + · · ·+ r1 M( F

2 ) + r2 M( F+1
2 ) + · · ·+ rF M(F) for even F

(33)

where M( f ), f = 1, . . . , F is the filtering MSE matrix at f th frequency (after re-ordering). For
brevity, we have used the short-hand notations θ̂

( f )
t (n|n)→ θ̂

( f )
t and M( f )(n|n)→ M( f ) in

the above two formulas. Finally, the final angle estimation θ̂wfd
t and averaged MSE matrix

Mwfd are used to update the prediction step (cf. Equations (28) and (29)) for the next time step.

3.2.2. Smoothing via Matrix-Based Frequency Diversity (MFD)

In such a case, the update step in the presence of FD is obtained by the following set of
correction equations exploiting the compact representation reported in Equation (27):

Kmfd(n) = M(n|n− 1) ĤH
fd(n)

[
Cfd + Ĥfd(n) M(n|n− 1) ĤH

fd(n)
]−1

(34)

θ̂mfd
t (n|n) = θ̂t(n|n− 1) +<

{
Kmfd(n)

[
xfd(n)− ĥfd

(
θ̂(n|n− 1); n

)]}
(35)

Mmfd(n|n) =
[
I3 − Kfd(n) Ĥfd(n)

]
M(n|n− 1) (36)

Analogously, the final angle estimation θ̂mfd
t and filtering MSE matrix Mmfd are

used to update the prediction step (cf. Equations (28) and (29)) for the next time step.
In the above formulation, we capitalized the stacked observation covariance matrix, e.g.,
Cfd = diag(C1, . . . , CF) and the stacked non-linear mapping and Jacobian matrix. The
former is clearly equal to:

hfd(n) =

 s(n, 1) a1(θt(n))
...

s(n, F) aF(θt(n))


∣∣∣∣∣∣∣
θt(n)=θ̂t(n|n−1)

(37)
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whereas the latter is given as:

Hfd(n) =


s(n, 1) ∂a1(θt(n))

∂θt(n)
0 0

...
...

...
s(n, F) ∂aF(θt(n))

∂θt(n)
0 0


∣∣∣∣∣∣∣∣∣
θt(n)=θ̂t(n|n−1)

(38)

Since the signal over different frequencies is unknown, a similar approximation can be
performed by plugging the estimates ŝ(n, f ) in Hfd(n) and hfd(n), obtained as:

ŝ(n, f ) =
[

a f (θt(n))Ha f (θt(n))
]−1

a f (θt(n))Hx f (n)
∣∣∣∣
θt(n)=θ̂t(n|n−1)

(39)

Capitalizing the above estimates provides the quantities Ĥfd(n) and ĥfd(n), respectively.

4. Simulation Results

In this section, we evaluate the tracking performance of the proposed approach via
simulations. In detail, a moving target from 5 to 20 km at 80 m altitude is considered.
The target emits a constant signal during the whole observation window. The noise
vector is assumed as w(n) ∼ N (0, σ2

c IN). Two multipath environments are considered
to examine the proposed method at a satisfactory depth: (i) a smooth surface scenario
(with dominance of the specular reflection) and (ii) a rough surface (with dominance of the
diffuse reflection). The SNR is set to 10 dB, and five operational frequencies for the WFD
process are considered, taken around the center frequency of 15 GHz. The sampling period
equals T = 0.01 s. The process noise vector within EKF is modeled as u(n) ∼ N (0, σ2

q IN),
where σq = 0.005.

The ULA with the 15 m height is made of N = 10 elements positioned vertically and
spaced by the center wavelength. The number of the snapshots used in the simulations is
10 for each frequency and the number of Monte Carlo trials is 100. More details about the
antenna specifications and environment parameters are listed in Table 1.

Table 1. Antenna specifications and environment parameters.

Parameter Value
Number of antenna elements (N) 10

Antenna height (hr) 15 m
Target height (ht) 80 m

Operating frequencies {14, 14.5, 15, 15.5, 16}GHz
Number of snapshots (S) 10

Beamwidth (θ3dB) 11.45°
Polarization Horizontal

SNR 10 dB

RMS of surface roughness (σh)
0.2 m (smooth surface)
0.8 m (rough surface)

Dielectric constant (ε) 80.1
Surface conductivity (σ) 4.8 mho/m

We compare the proposed FD-based methods with the double unitary transform
based GMUSIC (DU-GMUSIC) and the polarization smoothing GMUSIC (PS-GMUSIC)
methods [15,16]. Since both methods require a high number of snapshots to estimate the
covariance matrix of received signals accurately, S = 256 snapshots are considered. In what
follows, we first focus on one instance of the considered trajectory, i.e., by analyzing only a
single realization of the measurement noise.
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As shown in Figure 3a,b, the proposed methods are tracking very accurately the (true)
target elevation angle in both smooth and rough surfaces. Indeed, both the proposed
approaches suppress the diffuse fluctuations very well based on EKF smoothing ability
and with the capitalization of FD.
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Figure 3. The target elevation angle (θt) estimation versus the target range. (a) Smooth surface.
(b) Rough surface.

As depicted in Figure 4a,b, the proposed methods are also capable of providing explicit
velocity and acceleration estimates of the elevation angle. Conversely, MUSIC-based base-
lines (PS-GMUSIC and DU-GMUSIC) are not designed to estimate the velocity/acceleration
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explicitly. For the sake of a complete comparison, we obtained their velocity/acceleration
estimates as the first derivative of the angle estimates at consecutive time indices. Accord-
ingly, the proposed methods are tracking the velocity/acceleration in a relatively-accurate
fashion in both surfaces and over all the trajectory, while the other two competitor methods
are providing out-of-scale velocity/acceleration estimates.
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Figure 4. Velocity (θ̇t) and acceleration (θ̈t) estimation of target elevation angle versus the target range. (a) Smooth surface.
(b) Rough surface.

To provide a complementary (finer-grained) error analysis, Figure 5a,b reports the
scatter plots for the elevation angle estimate, which obtained over 100 Monte Carlo runs
of the same trajectory. As apparent from the results, the estimates for each range bin are
mostly distributed around the true angle for both the proposed methods, with insignificant
outlier points. Accordingly, the proposed estimators exhibit both a negligible bias and
a very limited variance. As expected, proposed methods performed better over rough
surfaces than over smooth ones. Indeed, the latter causes a stronger reflection power
(according to Figure 2). On the contrary, both PS-GMUSIC and DU-GMUSIC present
highly-biased angle estimates with a significant (higher) standard deviation.

To assess the estimation accuracy of the elevation angle estimation, we now assess
it via the well-known root mean square error (RMSE). Specifically, Figure 6 shows the
RMSE of the proposed method, which is much lower than (about one tenth of) the RMSE
of the DU-GMUSIC and PS-GMUSIC methods in both cases (smooth and rough surfaces).
Accordingly, the error of the proposed methods is negligible. However, the other two com-
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petitors use more snapshots than the proposed method, but they are unable to track the
target with respect to their severe fluctuations in estimation caused by the multipath effect.

The performance of these methods are degraded in the very-low angle situation.
Then, to stress the performance of the proposed approaches in a wide range of relevant
scenarios, Figures 7 and 8 represent their performance against the SNR and the number
of snapshots, respectively. First, by looking at Figure 7, the proposed method shows the
excellent performance in tracking the low-angle targets. The performance of both proposed
methods, even at very-low SNR, are appreciably higher (viz. lower in terms of RMSE) with
respect to the other two (MUSIC-based) baselines considered.

As a result, the proposed FD-based methods can be used in very-low SNR situa-
tion based on their unique high performance peculiarity in the above condition. More-
over, the proposed methods are capable of ensuring satisfactory performance even in
snapshot-limited (high-variability) scenarios, whereas MUSIC-originated methods require
a considerably-higher number of snapshots, as evident from Figure 8.

(a)

Figure 5. Cont.
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(b)

Figure 5. Scatter graph of the elevation angle estimates vs. the range (in meters). The plot highlight the bias-variance
decomposition of the considered estimators. Specifically, the difference between the (solid) blue and (dashed) red lines
underlines the estimator bias. Conversely, the shaded area corresponds to ± std. deviation, providing an indication of the
estimator variance. (a) Smooth surface. (b) Rough surface.

Furthermore, to assess the stability of the proposed trackers to non-nominal conditions,
the impact of the mismatch of observation noise variance σ2

c between measurements and
EKF is assessed in Figure 9. In the above case, a mismatch factor ε is considered in
the observation noise covariance matrix (i.e., C = ε σ2

c IN) within the EKF. As expected,
Figure 9 reveals that a high value of the mismatch factor has a slight negative impact on
the proposed method overall performance and that the proposed method is strongly robust
against observation noise mismatch over both FD algorithms.

Interestingly, in the rough surface scenario, the proposed method exhibits a higher
performance over undervalued mismatches (i.e., below 100). This mainly occurs since
reducing the mismatch factor implies that the EKF is weighting more the correction step
than the prediction step (cf. Equations (24) and (35)), which, for the rough surface scenario,
better represents the observation noise due to random behavior of the diffuse component.

Finally, Figure 10 shows the RMSE of the target elevation angle estimate against the
RMS of the surface roughness (σh). The performance results are reported for both the
proposed approaches and the considered MUSIC-based baselines. As expected, the RMSE
of the proposed methods are significantly lower in different multipath situation, especially
for high values of σh.
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Figure 6. RMSE of elevation angle estimation (θt) vs. the target range.
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Figure 7. RMSE of the target elevation angle (θt) against the SNR.
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Figure 8. RMSE of the target elevation angle (θt) against the number of snapshots.
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Figure 9. RMSE of the target elevation angle (θt) in the presence of a mismatch factor ε. In the above
plot, ε = 1 refers to the “no-mismatch” case, as highlighted in the figure via a dashed vertical line.
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Figure 10. RMSE of the target elevation angle (θt) against the RMS of the surface roughness (σh).

5. Conclusions and Future Directions

In this paper, we tackled the problem of low-angle isolated-target tracking in multipath
environments. Specifically, we proposed an elevation angle estimation method via the
EKF and promoted this method by two FD processes. Our method does not require
any additional prior knowledge of geometrical information and physical parameters and,
equally important, enjoys a low computational load. The simulation results showed that
the proposed methods have a precise (close) elevation angle estimation in any multipath
situation whereas the considered baselines (i.e., DU-GMUSIC and PS-GMUSIC methods)
are not able to track the target accurately.

Indeed, due to the EKF properties and the proposed FD processes, our approaches are
able to considerably suppress the diffuse and specular components, thus, mitigating their
corresponding fluctuations. Both proposed methods maintain their excellent performance
even in very-low SNR situation, while the performance of many other relevant methods
drops off significantly. These methods can be used in the low probability of intercept or
low-peak-power radars due to their high performance in very low SNR. Future works will
account for multiple-target tracking in the considered setup, privacy issues associated to
tracking estimates [35] and assessing the performance of the proposed approaches with
real data.
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Abbreviations
The following abbreviations are used in this manuscript:

AoA Angle of Arrival
DN Double Null
(E)KF (Extended) Kalman Filter
FB Fixed Beam
LS Least Squares
(G)MUSIC (Generalized) Multiple Signal Classification
DU-GMUSIC Double Unitary transform based GMUSIC
PS-GMUSIC Polarization Smoothing GMUSIC
(Q)(R)ML (Quadrature) (Refined) Maximum Likelihood
RMS(E) Root Mean Square (Error)
SNR Signal-to-Noise Ratio
ULA Uniform Linear Array
(W/M)FD (Weighted/Matrix-based) Frequency Diversity
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